PTSI Colles

SERIES

 $|\overline{\mathbf{I}}|$ Etudier la nature des séries suivantes :

1.
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^2};$$

2.
$$\sum_{n \geq 1}^{n \geq 1} \frac{2n}{n^3 + 1}$$
;

3.
$$\sum_{n\geq 1}^{n\geq 1} (\ln(n^2+2)-2\ln n);$$

4.
$$\sum_{n>1} \frac{1}{\sqrt{n}} \cdot \sin\left(\frac{\pi}{2 \cdot n}\right);$$

5.
$$\sum_{n\geq 1}^{n=1} n \cdot \sin\left(\frac{1}{n}\right);$$

6.
$$\sum_{n>0}^{-} \ln \left(1 - \frac{1}{n+2}\right);$$

$$7.\sum_{n=1}^{\infty} \left[1 - \cos\left(\frac{1}{n}\right)\right];$$

$$8.\sum_{n>1}^{-}\frac{1}{\sqrt{n}.\sqrt{n+1}}.$$

II Etudier la convergence et calculer en cas de convergence la somme des séries

1. $\sum_{n\geq 1} \arctan\left(\frac{1}{n^2+n+1}\right)$ (montrer que $\forall n\in\mathbb{N}^*$, $\arctan\left(\frac{1}{n^2+n+1}\right) = \arctan\left(\frac{1}{n}\right) - \arctan\left(\frac{1}{n+1}\right)$);

2. $\sum_{n\geq 1} \frac{1}{n(2n+1)}$ (décomposer en éléments simples $\frac{1}{x(x+1)}$);

3. $\sum_{n\geq 1} \frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}$ (vérifier que : $\forall n\in\mathbb{N}^*, \frac{1}{n\sqrt{n+1}+(n+1)\sqrt{n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}$).

 $\boxed{\text{III}}$ 1. Montrer que $\sum_{k=0}^{n} k! \sim n!$.

2. En déduire la nature des séries de terme généraux : $u_n = \frac{1}{(n+1)!} \sum_{k=0}^n k!$ et $v_n = \frac{1}{(n+2)!} \sum_{k=0}^n k!$.

 $\overline{\text{IV}}$ Montrer que (1, X, X(X-1), X(X-1)(X-2)) est une base de $\mathbb{R}_3[X]$.

Calculer $\sum_{k=0}^{+\infty} \frac{n^3}{n!}$.

 $\boxed{\mathbf{V}}$ 1. Montrer que la série $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n}$ est convergente (si $S_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$ on pourra considérer les suites (S_{2n}) et (S_{2n+1}) .

2. Sachant que $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln 2$, calculer $\sum_{k=1}^{+\infty} \frac{1}{n(2n-1)}$.

 $\boxed{\mathbf{VI}}$ 1. Calculer la limite de la suite (s_n) définie par $s_n = \sum_{k=n+1}^{2n} \frac{1}{k}$.

2. Retrouver la valeur de $\sum_{k=1}^{+\infty} \frac{(-1)^{n-1}}{n}$.

(Si $S_n = n$ -ième somme partielle de la série on a $S_{2N} = s_n$).

VII Pour $a \in \mathbb{R}$ étudier la convergence de la série $\sum_{n\geq 1} na^n$.

En cas de convergence, calculer $\sum_{n=1}^{+\infty} na^n$ (on pourra considérer la fonction f définie par $f(x) = 1 + x + x^2 + \ldots + x^n$).

 $\overline{\text{VIII}}$ Etudier les séries de terme général u_n :

- 1.
- **2.** $u_n = \sqrt{n^4 + n + 1} \sqrt{n^4 + an}$ (a réel donné);
- 3. $u_n = \ln\left(1 + \frac{(-1)^n}{n^{\alpha}}\right) (\alpha \text{ r\'eel donn\'e});$
- $4.u_n = \frac{(-1)^n}{\sqrt{n^{\alpha} + (-1)^n}}.$

IX En encadrant l'intégrale $\int_k^{k+1} \frac{dt}{\sqrt{k}}$ montrer que la suite $x_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} - 2\sqrt{n}$ est convergente.

Donner un équivalent de $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$.